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Theory of Lattice Thermal Conductivity: 
Role of Low-Frequency Phonons 
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The lattice thermal conductivity arises from contributions by phonons of all 
frequencies. The mean free path 1(~o) is limited mainly by three-phonon interac- 
tions, and l~(o~) ~ ~ 2T 1, where r is the phonon frequency, and T is the absolute 
temperature. Since the spectral specific heat varies as J ,  the spectral thermal 
conductivity is independent of frequency, and low frequencies play a larger role 
than they do in the heat content. The effect of additional scattering processes due 
to defects must be compared to intrinsic scattering, not just at the highest 
frequency, but over the full spectral range. This enhances the resistance due to 
grain boundaries and large obstacles, and reduces the effect of point defects. Some 
typical examples are discussed. The role of low-frequency phonons may be even 
further enhanced if longitudinal low-frequency phonons have their interaction with 
other phonons reduced by wave vector conservation. Such modes would then 
contribute substantially to the overall thermal conductivity, and this contribution 
would be sensitive to grain size and to large-scale defects. However, the mean free 
path must be consistent with ultrasonic attenuation data. This enhanced sensitivity 
may be observable. 

KEY WORDS: anharmonic interactions; grain boundaries; lattice waves; pho- 
nons; point defects; thermal conductivity. 

1. I N T R O D U C T I O N  

T h e  v ib ra t ions  o f  t he  a toms  in a c rys ta l  can  be  desc r ibed  by a superpos i t ion  o f  

p lane  w a v e  n o r m a l  modes ,  r a n g i n g  in f r e q u e n c y  f r o m  the  u l t r a son ic  to t he  

in f r a red  r eg ime .  A t  h igh  t e m p e r a t u r e s ,  t he  t h e r m a l  e q u i l i b r i u m  v ib ra t i ona l  

p roper t i e s  a r e  d o m i n a t e d  by the  m o d e s  o f  h ighes t  f r equency ,  bu t  the  l a t t i ce  

t h e r m a l  conduc t i v i t y  depends  on the  behav io r  of  waves  a t  all  f r equenc ies ,  
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since the low-frequency modes, though few in number, have a larger mean 
free path. 

It is the purpose of this paper to discuss the consequences of the 
enhanced role of the low-frequency modes. These include a smaller sensitivity 
of the thermal conductivity to point defects than would have been expected if 
most of the heat had been carried by the highest-frequency modes, and a 
larger effect due to extended defects and free electrons, which scatter lattice 
waves of low frequency. Finally, the conductivity may be sensitive to the 
behavior of a small group of low-frequency longitudinal modes of very large 
mean free path, thus causing an even greater sensitivity to grain size in 
polycrystalline materials, and to extended defects. 

2. HEAT CONDUCTION BY LATTICE WAVES 

The lattice waves that transport heat are characterized by their polariza- 
tion j and their wave vector q. The frequency of each wave is a function of q 
and j,  and o~j(q) depends on the nature of the crystal structure, the 
interatomic forces, and the atomic masses. For small values of q or w, the 
lattice waves become elastic waves in the corresponding continuum, and w is 
proportional to q for fixed direction and given polarization. In this limit, the 
number of normal modes in the frequency interval w, dw, is proportional to w 2. 
In the Debye approximation, this density of modes is assumed to hold at all 
frequencies up to a cutoff frequency wo (Debye frequency), dropping 
abruptly to zero for w >_ ~oo. The specific heat per unit volume of the solid can 
be written 

C= fo~~ C(~) ao~ =-~ ~ fo~~ (,~2/,,,~o) d~ (1) 

where a 3 is the atomic volume, and k is the Boltzmann constant. 
If we associate with each normal mode a mean free path or attenuation 

length l(w), assumed to be a function of frequency ~o, then the lattice thermal 
conductivity can be written as 

x = f K(~) ao~ = 1/3 f c(,o)~l(~) d~ (2) 

where v is the average velocity of lattice waves, assumed for simplicity to be 
the same for all modes [1]. 

3. INTRINSIC THERMAL CONDUCTIVITY 

The mean free path is limited by anharmonic processes (leading to an 
intrinsic mean free path li) and by defects and boundaries, which also scatter 



Lattice Thermal Conductivity 57 

lattice waves. Anharmonic processes arise from terms in the potential energy 
as a function of strain which are higher than quadratic. The most important 
such terms are cubic; in the lowest order of perturbation theory, they lead to 
interactions amongst groups of three lattice modes (three-phonon interac- 
tions). The intrinsic mean free path can be shown [ 1 ] to be of the form 

1 / / i (O)  , T )  = 2vZ(T/To)(wZ/vwv) (3) 

Here 3: is the Griineisen constant, and To = ua3/k, where ~ is the shear 
modulus. 

Substituting Eq. (3) into Eq. (2) and noting that a3w 3 = 6~r2v 3, we obtain 
for the intrinsic thermal conductivity X~, 

K~(w) = (2Try) 2(kTo/vT)a~D (4) 

which is independent of w, and 

x, = f ~(~)  d,o = Kio~D 

= (2rr3,)-2(kTo/vr)JD (5) 

Except for a numerical coefficient, which arises from the numerical coeffi- 
cient in Eq. (3), Eq. (5) is equivalent to the well-known formula of Leibfried 
and Schl6mann [2]. Equation (5) can be put into the form 

16,( )3 a0  
hi = ~ -  T (6) 

where h is the Planck constant, and M is the atomic mass. The Debye 
temperature 0 is defined by hwD/27rk. In the Leibfried-Schl6mann formula, 
the factor 1.61 is replaced by 3.81. We used the identity kTo = M J .  The 
Leibfried-Schlfmann theory has been carefully compared to thermal conduc- 
tivity data in a recent review by Slack [3]. For the present discussion, Eq. (6) 
can be regarded as a reasonable fit for simple structures. 

The fact that Ki(w)is independent of w implies that all frequency 
intervals (but not all normal modes) contribute equally to the intrinsic 
conductivity X;, in contrast to the energy content, to which all modes make 
equal contributions, so that the energy content is dominated by the highest 
frequencies or shortest waves. In the lattice thermal conductivity, the entire 
spectral range is important. 

The greater weight given to low-frequency modes is fortunate for 
theoreticians, since most of the scattering rates are calculated at low frequen- 
cies and then extrapolated to high frequencies. Since low and intermediate 
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frequencies matter  most in the conductivity integral, Eq. (5), this procedure 
has some validity. 

At high temperature lg(w, T) becomes so short that one has to question 
the adequacy of perturbation theory and to doubt the T -1 dependence of the 
mean free path. Thus in a typical case when To = 50,000 K, 3' = 2, wo = 4 x 
1013s-l, and v = 3 x 105cm/s, onefindsl~(wD)= 3 x 10 -Scma t  T =  1500 K. 
The theory must therefore fail for modes of the highest frequency just below 
the melting point of most solids. Even the average mean free path 

7 = 3A/Cv= 36(WD) (7) 

is only about 10 ~ .  But since I; ~ (.0 -2 ,  l i is less than 10 fl~ only ifw > 0.6WD, and 
these modes contribute only 40% to the conductivity. I f  10/~ were a minimum 
mean free path, the mean free path of the high-frequency modes would no 
longer scale as T -~ but would remain constant, and Ai would vary not as T -1 
but a s  T -0"6 above 1500 K. However, At would not be independent of 
temperature, as one would have expected from similar considerations based 
on the average mean free path l. 

Although the theory predicts both K(~o) and therefore Ai to vary as T-~, 
this assumes the solid to remain at constant volume. Since solids expand with 
increasing temperature,  and since the thermal conductivity decreases with 
increasing volume (or increases with pressure), 

(T/A) dX/dT = - ( 1  + n) (8) 

where 

d lnA d in  V 
- -  . 

n =  - d l n V  d l n T  (9) 

and where V is the volume. Typically d In Aid In V-- - 7 to - 8 [4], and d In 
V/d In T = 0.03 at 1000 K, so that n = 0.2 and increases roughly linearly 
with T, owing to the variation of the second factor. Another contribution to n 
may come from quartic anharmonicities, but since one would expect these 
processes to be weaker than cubic anharmonicities by a factor of order T/To, 
their contribution to n is expected to be an order of magnitude smaller [5]. 

4. EFFECT OF I M P E R F E C T I O N S  

Lattice waves are also scattered by crystal defects with a mean free path 
lo(co), and to a first approximation, 

1/l(6o, T) = 1/te(O~, T) § I/ID(w) (10) 
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The second term is itself additively composed of contributions from various 
defects. The additivity holds for each frequency separately, and since the 
various scattering probabilities in Eq. (10) have different frequency depen- 
dences, this does not imply an additivity of the corresponding thermal 
resistivities. Point defects have a scattering cross-section that varies as w 4 at 
low frequencies, while extended defects, such as colloid inclusions and grain 
boundaries, scatter independently of frequency. Other defects, such as dislo- 
cations or thin laminar defects, fall between these two extremes. 

Consider the case when there are point defects as well as large obstacles, 
as in the case of some oxides following intense neutron irradiation [6]. Point 
defects reduce K(w, T)  mainly at the highest frequencies, extended defects 
mainly at the lowest frequencies, while K(w, T)  is virtually unaffected over a 
wide range of intermediate frequencies. Each defect causes a decrease in the 
thermal conductivity X, 

X = Xi - 6Xv - 6Xex (11) 

and 6Xv, the decrease due to point defects, and 6Xex, due to extended defects, 
are independent of each other. Equation (11) also differs from the additive 
resistance approximation. 

Neutron irradiated alumina [7] has large defects, seen under the 
electron microscope, of 50 ~ diameter, in a concentration of 3 • 10 Iv cm -3, so 
that (IEx) ' = 5.9 x 10 4 c m  - l .  Defining a dimensionless parameter  Xo by 

X 2 = li(wo, T) / IEx  (12) 

so that li and IEx are equal at a frequency Xowo, one can show that 

X~-. = Xo tan -1 -~ ~Xo (13) 

since X o is usually small. In the present case of alumina at 1000 K, using an 
empirical value for li, Xo = 0.077 and 6XEx/Xe = 0.12. Since observed 
reductions on strong neutron irradiation are around 50%, the excess reduction 
is probably due to point defects. 

Let us assume a vacancy concentration c = 0.02, which makes the 
volume occupied by the vacancies equal to that of the large obstacles. Using 
an expression due to Ratsifari tanna [8] for the vacancy cross-section, i.e., 

a36o 4 

1/lv = 9c 4Try 4 (14) 
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one finds 

6Xe/X i = 1 - w~ tan -l w~ (15) 
CO D 600 

where 600 is defined by le(wo) =/i(w0, T), so that 

43/2 T 
w 2 - -  w~ (16) 

37r Toe 

With c = 0.01, To = 100,000 K, and T = 1000 K, we find w0 = 0.92 wo and 
6)~e/Xi = 0.24. If we had included "normal" (wave-vector conserving) three- 
phonon processes, the reduction would have been about 60% larger. The 
simplified theory predicts 6)~/)~i = 36% at 1000 K, somewhat less than the 
observed reduction of 50%. 

Another case of interest is the reduction in X in a fine-grained material 
due to grain-boundary scattering. If the mean free path in alumina is thus 
limited to 5 • 10 4 cm, X0 of Eq. (12) becomes 0.014 at 1000 K, and 6X/Xi = 
0.022. Similarly, at 300 K, X0 = 0.026 and 6)~/Xi = 0.041. These are then the 
fractional changes in lattice thermal conductivity between a fairly fine- 
grained and a coarse-grained polycrystalline material. It is doubtful whether 
this small effect can be observed, particularly as there may be a small 
radiative component which would also increase with grain size. However, the 
effect of grain size is considerably larger than one would have expected by 
comparing IEx with l~(wo, T) ,  for at this highest frequency, the change is only 
X 2, and thus an order of magnitude smaller. 

5. LONGITUDINAL PHONONS 

The preceding discussion was based on Eq. (3), which in turn is based on 
the assumption that all modes interact mainly with modes of the highest 
frequency wD. This is correct for transverse modes, but may not be correct for 
longitudinal modes. Longitudinal low-frequency modes cannot interact with 
high-frequency modes and still conserve both frequency and wave vector (i.e., 
phonon energy and phonon momentum) in a three-phonon process. This was 
already pointed out by Pomeranchuk [9]. If the conservation conditions are 
satisfied, longitudinal phonons have a longer mean free path, given by [ 10], 

1Il l(L,  oo, T )  = 671"23/2 "~o kwo] wDV (17) 

unless limited by defects or four-phonon processes. This would have two 
consequences: the additional heat transported by the longitudinal modes 
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would modify the temperature dependence of),~(T), and the thermal conduc- 
tivity would be more sensitive to other scattering mechanisms which are 
important at low frequencies, particularly grain boundaries and large 
defects. 

Comparing this with Eq. (3), we find that longitudinal modes would 
make an additional contribution to K,.(~o) and thus to X in the frequency range 
w < ~oo/5. Also, Ki(L, w) would diverge at low frequencies as w -2, so that X 
would be sensitive to the relatively weak processes that are needed to remove 
the divergence, such as four-phonon interactions, extended defects or grain 
boundaries, or perhaps even free electrons. 

Whether this sensitivity to grain boundaries, etc., is real depends on 
whether three-ph0non interactions are indeed restricted by wave-vector 
conservation, or whether the finite mean free path of the high-frequency 
modes relaxes this restriction and allows forbidden interactions to occur. At 
very low (ultrasonic) frequencies the latter is true, and longitudinal ultrasonic 
waves are attenuated by interacting with high-frequency modes almost as 
strongly as transverse waves. Under these conditions, the attenuation is given 
by the Akhieser theory [11 ], (see also [ 10]), 

1 oa 2 
(18) 1 / I A K ( W )  10 coov 

independently of temperature. Thus longitudinal waves are attenuated not 
very differently from Eq. (3) at T/To ~ 10 -2, i.e. around 500 to 1000 K. 

However, Eq. (18) applies only if wli(ooo)/v ~ 1. Using Eq. (3) again, we 
find that Eq. (18) ceases to hold and must be replaced by Eq. (17) at higher 
frequencies, i.e., if 

T (19) w > wo2y 2 Too 

At 300 K, with 3' = 2, this critical frequency is oaD/20. Above that frequency, 
the mean free path of longitudinal modes is given by Eq. (17); hence it 
exceeds that of Eq. (3) in the range 0.05-0.2 wD. If  these estimates are 
correct, the longitudinal modes have a long mean free path (up to 10 -3 cm), 
and their contribution to X is both appreciable and sensitive to grain boundary 
scattering. However, this argument depends on the choice of the muttiplica- 
tive constant in Eq. (17). Whether longitudinal modes of low frequency (say 
around w~/20) play indeed a significant role in heat transport at room 
temperature is still an open question, requiring both theoretical and experi- 
mental investigation. At high temperatures (say t000 K), their rote is 
probably small; below room temperature, it is undoubtedly significant. 
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